Correction: Nuclear Motility in Glioma Cells Reveals a Cell-Line Dependent Role of Various Cytoskeletal Components
نویسندگان
چکیده
Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.
منابع مشابه
I-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملThe Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells
Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...
متن کاملThe cytotoxic effect of memantine and its effect on cytoskeletal proteins expression in metastatic breast cancer cell line
Objective(s):Breast cancer is an important leading cause of death from cancer. Stathmin and tau proteins are regulators of cell motility, and their overexpression is associated with the progression and bad prognosis of breast cancer. Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is the potential inhibitor of tau protein in neurons. This study determines the effect of memantine ...
متن کاملRadiosensitizing effect of deferoxamine on human glioma cells
ABSTRACT Background: Tumor cells exhibit an increased requirement for iron to support their rapid proliferation. Deferoxamine (DFO), an iron chelator, has been reported to have anti-proliferative effects on cancer cells through induction of apoptosis and cell cycle arrest. X-rays also induce apoptosis and cell cycle arrest. However, limited information is available regarding the effect of iron...
متن کاملAuto-reverse nuclear migration in bipolar mammalian cells on micropatterned surfaces.
A novel assay based on micropatterning and time-lapse microscopy has been developed for the study of nuclear migration dynamics in cultured mammalian cells. When cultured on 10-20-microm wide adhesive stripes, the motility of C6 glioma and primary mouse fibroblast cells is diminished. Nevertheless, nuclei perform an unexpected auto-reverse motion: when a migrating nucleus approaches the leading...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014